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Abstract
We present a theory for spin-polarized transport through a generic organic polymer connected
to ferromagnetic leads with arbitrary angle θ between their magnetization directions, taking into
account the polaron and bipolaron states as effective charge and spin carriers. Within a diffusive
description of polaron–bipolaron transport including polaron–bipolaron conversion, we find that
the bipolaron density depends on the angle θ . This is remarkable, given the fact that bipolarons
are spinless quasiparticles, and opens a new way to probe spin accumulation in organic
polymers.

1. Introduction

Recent years have witnessed significant advances in organic
electronics, with interesting new fundamental insights and
the prospect of new applications and devices functioning at
room temperature [1, 2]. A particularly interesting aspect
comes from the spin degree of freedom, leading to ‘plastic
spintronics’ [3]. Organic materials such as polymers may
be superior to inorganic semiconductor devices because of
their small spin–orbit and hyperfine couplings, in principle
allowing for very long spin coherence times. Moreover,
the ease of fabrication and low-temperature processing of
organic materials is very attractive for possible applications.
Spin transport through π -conjugated semiconducting organic
polymers has consequently been studied in a number of recent
experiments, and evidence for spin-polarized current injection
and giant magnetoresistance in organic spin valves [4–7]
as well as spin-dependent optical effects [8, 9] have been
reported.

Besides relevance for applications, the unconventional
electronic properties of conducting polymers pose interesting
fundamental questions. In undoped trans-polyacetylene,
the charge and spin carriers are known to be soliton-like
excitations, which are characterized by nontrivial spin–charge
relations reflecting electron fractionalization [10]. This raises
the possibility of unconventional spin-transport properties in

undoped trans-polyacetylene. On the other hand, for basically
all doped (nondegenerate) polymers, it has been established
that the dominant charge and spin carriers at low energy
scales well below the mean-field Peierls gap � correspond
to polarons and bipolarons [1, 10, 11], whereas solitons can
safely be ignored. As the polaron carries spin 1/2 like an
ordinary electron and the bipolaron is spinless, spin current
can only be carried by the polaron. Nevertheless, as we
show below, the bipolaron density is affected by spin-polarized
transport and can serve as a tool to detect the latter.

In this work, we discuss spin transport through doped
organic polymers, where polarons and bipolarons are the
relevant charge carriers. In a typical two-terminal geometry
(transport along the x axis), the organic polymer is contacted
at x = 0 and L by two ferromagnetic (FM) metallic electrodes,
where L is the length of the polymer. The left (right) electrode
is characterized by a magnetization unit vector m̂L (m̂R), with
the angle θ between them, m̂L · m̂R = cos θ . We do not
attempt a microscopic modeling of the interface between a FM
electrode and the organic polymer, but follow the arguments
of [11–14], where it has been established that carriers injected
into the polymer tunnel predominantly into polaron states close
to the contact. We therefore impose the boundary condition
that no bipolaron states near the boundaries (at x = 0 and
L) are filled by the injected current. Both contacts can
then be completely described by spin-dependent conductances
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G↑ and G↓, which take into account the spin-dependent
density of states in the FM and the (disorder-averaged) matrix
elements for tunneling into polaron states [15]. Moreover,
for noncollinear magnetizations (0 < θ < π ), one also
has to include the complex-valued mixing conductance G↑↓
reflecting boundary exchange processes [16–18].

Transport in the polymer itself has so far been modeled
either numerically, using lattice simulations of charge
transport [19–22], or analytically, using simple master
equations [23] or drift–diffusion models. The latter approaches
have also been applied to spin transport [24–27]. Here we use
the network theory of [15, 16] combined with a diffusive model
to obtain spin-transport properties of a doped organic polymer
sandwiched between two FM electrodes with noncollinear
magnetization directions (arbitrary θ ). In the absence of
bipolarons and for very high temperatures, this problem has
been studied in [26]. Here we present a generalization
including the polaron–bipolaron conversion process, and also
study the low-temperature quantum-degenerate limit.

2. Model

The energy-dependent polaron distribution function f̂P(x, ε)

at location 0 < x < L can be decomposed into a spin-
independent scalar part f0(x, ε) and a spin-polarization vector
f(x, ε),

f̂P(x, ε) = f0σ0 + f · σ , (1)

with the standard Pauli matrices σi in spin space; σ0 is the
unit matrix, and we assume homogeneity in the transverse
direction. Note that a polaron has charge e and spin 1/2.
Another important charge carrier in organic polymers is the
spinless bipolaron, with charge 2e and the scalar distribution
function fBP(x, ε) [1, 10]. With the average density of states
ρ(ε), we introduce normalized densities by integrating the
distribution functions over energy,

n̂P(x) =
∫

dε ρ(ε) f̂P(x, ε) = n0(x) + n(x) · σ ,

nBP(x) =
∫

dε ρ(ε) fBP(x, ε).

(2)

These densities are defined relative to an equilibrium
reference value, and reflect nonequilibrium charge and spin
accumulation in the polymer. Since our model does not include
the quasiparticle states outside the mean-field gap �, but only
retains the polaron and bipolaron states inside the gap, we
choose ρ(ε) � �−1�(� − |ε|).

In typical organic polymers, disorder is present and
implies diffusive transport for both polarons and bipolarons,
with the respective diffusion constants DP and DBP. The
equations of motion for n̂P(x, t) and nBP(x, t) are thus

∂t n̂P = DP∂
2
x n̂P − τ−1

s f (n̂P − n0σ0) + i[h ·σ , n̂P]−
− SPσ0, (3)

∂t nBP = DBP∂
2
x nBP + SP, (4)

where τs f is the polaron spin-relaxation time and SP models
conversion processes between polarons and bipolarons [27],

SP(x) = k(n2
0 − n2) − bnBP. (5)

The parameter k describes the local recombination rate for
two polarons of opposite spin forming a bipolaron, while b
comes from the reverse process, where a bipolaron decomposes
into two polarons of opposite spin. The spin-precession term
in (3) comes from an applied homogeneous magnetic field,
where h = gμBB/h̄. We are interested in the steady-state
case, where ∂t n̂P = ∂t nBP = 0 in (3) and (4). According to
Fick’s law, the stationary spin-dependent particle current in the
polymer is then encoded in the 2 × 2 matrix (in spin space)

Ĵ(x) = −DP∂x n̂P(x) − DBP∂x nBP(x)σ0. (6)

Equation (3) yields a decoupled equation for the spin-
polarization vector,

DP∂
2
x n(x) =

⎛
⎝

τ−1
s f −hz hy

hz τ−1
s f −hx

−hy hx τ−1
s f

⎞
⎠ · n(x). (7)

Given the solution to (7), by taking the scalar part of (3) and
combining it with (4), the bipolaron density is determined by

nBP(x) = − DP

DBP

(
O x

L
+ P + n0(x)

)
, (8)

with two integration constants O and P . The only nontrivial
equation that needs to be solved is given by

DP∂
2
x n0 = k(n2

0 − n2) + bDP

DBP

(O
L

x + P + n0

)
. (9)

As discussed above, we impose the boundary condition

nBP(0) = nBP(L) = 0, (10)

since tunneling into the polymer involves only polaron states.
With (8), this implies boundary conditions for (9),

n0(0) = −P, n0(L) = −(P + O). (11)

In order to solve (7), we need six additional integration
constants. We therefore have to specify boundary conditions
reflecting spin and charge current continuity at the contacts to
the left and right FMs. The FMs are taken as reservoirs with
identical temperature T and chemical potentials μL/R, where
the applied voltage is eV = μL − μR. As before, we introduce
(normalized) densities,

nFM
L/R =

∫
dε ρ(ε)nF(ε − μL/R), (12)

with the Fermi function nF(ε) = 1/[eε/kB T + 1]. Boundary
conditions then follow by relating the current (6) at x = 0
(x = L) to the injected current at the left (right) interface [16],

Ĵ(0) = −
∑

σ=↑,↓
Gσ ûσ

L(n̂P(0) − nFM
L σ0)û

σ
L

− (G↑↓û↑
Ln̂P(0)û↓

L + h.c.), (13)

Ĵ(L) =
∑

σ=↑,↓
Gσ ûσ

R(n̂P(L) − nFM
R σ0)û

σ
R

+ (G↑↓û↑
Rn̂P(L)û↓

R + h.c.). (14)
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Note that (10) implies that bipolarons do not enter this
boundary condition. The matrices ûσ

L,R = 1
2 (1 + σ m̂L,R · σ )

project the spin direction σ =↑,↓= +,− in the polymer
onto the respective FM magnetization direction. For simplicity,
we assumed identical spin-polarized (G↑, G↓) and mixing
(G↑↓) conductances for both contacts. They must obey
Re G↑↓ � (G↑ + G↓)/2 [16]. The 2 × 2 matrix equations (13)
and (14) allow to determine the eight integration constants, and
thereby yield the spin-polarized current through the system
for arbitrary θ . Moreover, this gives access to the bipolaron
density from (8) after solving (9). We stress that none of the
eight integration constants depends on the parameters k and b
in (5).

From (6) and (8), we can immediately see that charge
current Jc = DPO/L is conserved,

Ĵ (x) = Jcσ0 + Js(x) · σ , (15)

and the spin current, Js(x) = −DP∂xn(x), follows from the
solution of (7). Remarkably, both Jc and Js(x) are independent
of the polaron–bipolaron transition rates k and b in (5), and
the spin-dependent current alone cannot detect the presence
of bipolarons in the polymer. Nevertheless, as we show
below, the bipolaron density nBP(x), which is induced by the
nonequilibrium spin accumulation in the polymer, is sensitive
to these rates. As a useful measure, we will employ the
integrated density,

N(θ) =
∫ L

0
dx nBP(x; θ). (16)

The θ -dependence of the bipolaron density is then encoded in
the dimensionless quantity

R(θ) = N(0) − N(θ)

N(0) − N(π)
. (17)

By definition, this quantity interpolates between R(0) = 0 and
R(π) = 1 as θ is varied from the parallel to the antiparallel
configuration.

3. The collinear case: a readily solvable limit

We first discuss a simple yet important limit, where a direct
analytical solution can be obtained. This limit is defined by
collinear magnetizations, m̂R = pm̂L with p = ± (parallel
or antiparallel configuration) and m̂L = êz . Moreover, we
consider the length of the polymer as short compared to the
spin coherence length, L � √

DPτs f , and put h = 0 (no
magnetic field). In that case, (7) has the general solution
n(x) = −(F x/L + G), with constant vectors F and G. For
m̂L = êz = ±m̂R, the boundary conditions (13) and (14) imply
that the x and y components of both vectors vanish, and the
spin current is conserved,

n(x) = −êz

(F
L

x + G
)

, Js = DPF
L

êz . (18)

The four remaining integration constants (O,P,F,G) readily
follow by solving the boundary conditions (13) and (14) [16].

For the parallel (p = +) configuration, they are

O+ = 2(P+ + μ̄) = G↑G↓ + 2(G↑ + G↓)GP

(G↑ + 2GP)(G↓ + 2GP)
eV ,

F+ = −2G+ = (G↑ − G↓)GP

(G↑ + 2GP)(G↓ + 2GP)
eV ,

(19)

while for the antiparallel case, we find F− = 0 and

O− = −2(P− + μ̄) = G↑G↓

G↑G↓ + 2GP(G↑ + G↓)
eV ,

G− = − (G↑ − G↓)GP

G↑G↓ + 2GP(G↑ + G↓)

eV

2
,

(20)

where μ̄ = (μL + μR)/2 is the mean chemical potential
and GP ≡ DP/L. The charge current for the respective
configuration is then Jc = GPO±, while the spin current is
Js = GPF±êz .

The remaining task is to solve (for given p = ±)
the nonlinear equation (9) for n0(x) under the boundary
condition (11), using (18)–(20). Since the transition rates k and
b are known to be small [27], we use a perturbative iteration
scheme and write

n0(x) = −O
L

x − P + ñ0(x). (21)

For k = b = 0, this ansatz solves (9) under the correct
boundary conditions when putting ñ0(x) = 0; note that the
bipolaron density is directly proportional to ñ0(x), see (8). For
small but finite k, b, we then insert (21) into (9) and linearize in
ñ0. This yields a second-order differential equation for ñ0(x),
which needs to be solved under Dirichlet boundary conditions
at x = 0 and L. The solution gives the bipolaron density for
the parallel and antiparallel configuration in closed form,

n(p=±)

BP (x) = − k

DBP

(
C±x + (P2

± − G2
±)

x2

2

+ P±O± − F±G±
L

x3

3
+ O2± − F2±

L2

x4

12

)
, (22)

where the integration constant C± follows from the condition
nBP(L) = 0. The integrated bipolaron density (16) is then
given by

N± = kL3

12DBP

(
P2

± −G2
± +P±O± −F±G± + 3

10
(O2

± −F2
±)

)
.

(23)
Note that N+ �= N− follows immediately from (19) and (20),
indicating that the bipolaron density indeed is sensitive to the
spin accumulation in the polymer. The bipolaron density (22)
is shown in figure 1, taking parameters for sexithienyl as
organic spacer [26]. One clearly observes a difference between
the parallel and the antiparallel configuration. Although the
current is not sensitive to the polaron–bipolaron transition
rates k and b, the bipolaron density is influenced by the
nonequilibrium spin accumulation in the polymer.
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Figure 1. Bipolaron density nBP(x, θ) for collinear magnetizations,
i.e., θ = 0 (solid curve) and θ = π (dashed curve), as obtained
from (22). We use a representative parameter set for hole
transport [26]. In units where GP = DP/L = 1, the parameters are
DBP = 2L/3, G↑ = 104, G↓ = 10−2, k = DP/10, b = DBP/10,
� = 3.5, μ̄ = −2, T = 0, and eV = 1. The inset shows
y(x) = [n(−)

BP (x) − n(+)
BP (x)]/n(−)

BP (L/2) for the same curves.

4. Noncollinear magnetization

In the general case of arbitrary angle θ between m̂L and m̂R,
one can solve the problem in an analogous manner but the
equations become less transparent. The main difference is
that now the mixing conductance G↑↓ has to be taken into
account. However, as reported previously [26], we find that
the results are practically independent of the precise choice
for G↑↓. We find a smooth crossover between the limiting
values for θ = 0 and π , see (22), illustrated for the integrated
bipolaron density (16) in figure 2.

5. Conclusions

In this work, we have discussed spin transport in doped
organic polymers, employing a diffusive description of
polaron and bipolaron transport. In a two-terminal
setup, where the polymer is sandwiched by (generally
noncollinear) ferromagnetic electrodes, the problem can be
solved analytically by exploiting the smallness of the polaron–
bipolaron transition rates k and b. While the spin-dependent
current through the device turns out to be independent of
k and b, the nonequilibrium bipolaron density is a sensitive
probe of spin accumulation. The possibility to measure
this density in optical-absorption experiments [28–30], e.g.,
by adapting charge-modulation techniques [31] to the two-
terminal transport geometry considered here, may offer a
novel way to probe spin accumulation in organic polymers.
Such an optical method would be complementary to the
usual magnetoresistance measurement of spin accumulation
and could thus serve as another means to independently verify
spin-injection efficiencies in organic polymers [32].

Our work generalizes previous studies where bipolarons
were neglected [26] or only a single ferromagnet–polymer in-
terface was considered [27]. We also treat the nonequilibrium
situation due to an applied voltage self-consistently instead of

Figure 2. Spin-accumulation sensitivity R(θ), see (17), of the
bipolaron density as a function of the magnetization tilt angle.
Parameters are as in figure 1, additionally we set
Re G↑↓ = Im G↑↓ = 5.1 × 103.

postulating the existence of a uniform electric field [27]. We
mention in passing that results from a recent Monte Carlo sim-
ulation [33] have elucidated the importance of bipolaronic ef-
fects for a nontraditional type of magnetoresistance that occurs
in conducting polymers in the absence of magnetic contacts.
Another recent theoretical study [34] on magnetoresistance in
polymers with polaron and bipolaron carriers used a diffusive
approach and magnetic contacts (FM–polymer–FM configura-
tion). In contrast to our work, however, reference [34] does
not take into account conversion processes between polaron
and bipolaron states, but simply assumes a constant density
of bipolarons and includes this into the transport calculations.
Surprisingly, a dependence of the magnetoresistance on the ra-
tio of bipolarons and polarons is reported [34], whereas we
find the spin-polarized current to be independent of the bipo-
laron formation rate. Our finding can be traced back to the
well-established [13, 14] suppression of tunneling into bipo-
laron states near the interface with a FM electrode. This feature
is ignored when simply assuming a constant bipolaron density.
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